

- EMC and C \in Marked
- RS485 Comm. STD
- cUL Approved
- Diagnostic

We are delivering Real Cost Benefits

CD Automation was founded in 1987 with the clear strategy of becoming a leading supplier of quality industrial automation products to the Italian market.
Key to this success was the formation of a sales team educated from a strong technical background.
The philosophy was simple; provide product \& application experts able to work in partnership with the customer to find the right solution.

In 1990 CD Automation began its development of thyristor power controllers and quickly became the world wide market leader in using microprocessor based technology including RS485 communication.

Technical Service
CD Automation has invested heavily in computerised testing equipment \& state-of-theart production equipment.
All products are individually testing including full functional, to improve quality and product reliability.
Our help desk service is available 10 hours per day with ex-stock delivery for spare parts. Remote service via Internet is also available for thyristor units with RS485 communications.

INDEX

ONTRODUSUOWN and PRODUGT PHMOSOPHY
2-7

PRODUGS SELSETHOWb FEAMUBS and DOMENSNONS 8-13
REVO © 14-15
REVO SSB COGUS AANANOGOB and REVO S23 16-18
REVO S DOZ-3 PNASE THYRNSTOR ツNTUS 19-21
RSVO W 0-2-3 PHASE THMRISUOB UNIUS 22-24
QEVO B2-3 PMASE UHMEnSTOR MNOUS 25-26

REVO US INUEGR/ATED CONTROLLER \& THVRISTOR 30-39
REVO PS FOR POWER LOAD MANAGEMENT 40-41
Auronnalerv Onous 42-48
APPLCANOON SOFTWARE 49-59
बvSToM IoZ-3 PHABE THMRISTOR UMITUS 60-69 SOPV STAFUERS FOR GE mOTORS 70-77

Is it now time for innovation?

The industrial world has changed beyond recognition yet the temperature control zone has been left almost un-touched, using the same wiring and mounting methods for the controller, solid state relay, fuse \& fuse holder, current transformer etc.
Our idea is bring the temperature control the 21 st Century
The new REVO is THE solution for today's modern industrial sector.

presents

What REVO offers?

- Modularity of its components.
- Configurability that allows increased product performance.
- REVO's 'value-add' capable of saving 50\% of labour and space
- Innovation based on knowledge of process.
- International assistance from around the world via trained
distributors and joint venture multi-national companies.
- Dynamic organization with total customer flexibility at the core of its philosophy.

REVO is a system not a simple product

Includes all key components of a typical temperature control zone.
Modular system that is fully configurable satisifying the most complex applications.

- Wiring \& mounting accessories included.
- Designed as a total block of automation

Touch panel or PC communications capability as standard.

- Multi power management (MPM) to reduce total peak current, optimising power factor \& saving costs.

Why choose REVO?

A choice to be made!!

We designed a superior product
With the market place becoming more competitive we had a choice to make. Design a product a little cheaper but possibly not as good, or design a new innovative product where its added value is clear for all to see. We chose the latter, in line with our long-term philosophy

No compromise.

Heatsink and thyristor junctions generously sized to guarante a long life for the thyristor unit.

- Units working at low junction thyristor temperature
with 20% margin on max temperature
- Strong connection design between the block terminal
and thyristor semiconductor connection allows for generous sizing
- All the copper connections treated against oxidation.
- Rugged construction for electronic and plastic parts.

Protection against over voltage.

Have a closer look.

Open a CD Automation thyristor unit and any of our competitors, you will discover the
difference and see why we can offer a longer life warranty (see below tab.)

Save space = Save money
With a reduction of 50% space, it's easy to save hundreds of he cabinet price. The difference between conventiona mounting and REVO is shown on page 36
eft Side (Traditional)
Mounted on the baseplate are a Fuse \& Fuseholder 40A Solid State Relay and a Current Transformer

Right Side (Innovative)
Mounted on the same baseplate are two REVO 40A units, each having the same components as the traditional unit
This simple example demonstrates a 50% saving of panel space

An innovative process solution that will dramatically save wiring \& labour time

The new REVO S family can be put together with little technical knowledge.

- SSR Solid State Relay with Zero Crossing.

SSR Solid State Relay + Fuse \& Fuse Holder
St

- Different versions with or without heatsink
- Single and three phase thyristor units.

The new REvO M = REVO $\mathbf{S}+$ Drive \mathbf{M}
The addition of Drive M transforms a simple unit into a sophisticated unit capable of the following additional features

Universal inputs accepting all standard signals.
Universal firing including Zero Crossing, Burst Firing
single Cycle, Delayed Triggering and Phase Angle.
Universal Feed Back (Voltage, Current and Power).
RS485 Communication.

options

Heater Break Alarm for partial or total load failure
Thyristor short circuit failure.

INTEGRATED CONTROL ZONE - REVO TC
This Solution is known as integrated Control Zone and includes:
Temperature Controller - Fuse+Fuse Holder
Current Transformer - Solid State relay
Key benefits include:

- Space reduction of 50%, labour reduction of 2 hours per control zone,
single loop integrity and high reliability.
If one zone fails a non-technical user can substitute a second within minutes.
- If a PLC is used you must have an expert to service your system.

Glossary

Zero Crossing ZC

ZC fring mode is used with the logic output from a temperature controller and so the thyristor operates like a contactor The cycle time is performed by the temperature controller. Zero Crossing minimizes interferences as the thyristor unit switches ON-OFF at zero voltage.

urst Firing BF

This firing is performed digitally within the thyristor unit at zero volts, producing no EMC interference Analogue input is necessary for BF and the number of complete cycles must be specified for 50% power demand. This value can be between 1 and 255 complete cycles, determining the speed of firing. When 1 is specified, the firing mode becomes Single Cycle (SC)

Soft Start + Burst Firing now availabe as an option.

Single Cycle SC

SC is the fastest zero crossing switching method. At 50\% input signal, one cycle is ON and one cycle is OFF. At 75\% 3 cycles are ON and one cycle is OFF. If power demand is 76% the unit performs the same as for 75% but every time the unit switches ON the microprocessor divides $76 / 75$ and memorises the ratio. When the sum is one the unit delivers one cycle more to the load. With this firing it is necessary to have analogue input.

elayed Triggering DT

Used to switch the primary coil of transformers when coupled with normal resistive loads (not cold resistance) on the secondary, DT prevents the inrush current when zero voltage (ON-OFF) is used to switch the primary. The thynistor unit suithes ON only when positive with a pre-set delay for the first half cycle.

Phase Angle PA
PA controls the power to the load by allowing the thyristor to conduct for part of the AC supply cycle only. The more power required, the more the conduction angle is advanced until virtually the whole cycle is conducting for 100% power. The load power an be adjusted from 0 to 100% as a function of the analogue input signal, normally determined by a temperature controller or potentiometer, PA is normally used with inductive loads.

oft Start+Burst Firing S+BF

This is an additional feature to Burst Firing. Starting in Phase Angle mode, the unit ramps from zero to full voltage at a preset time, finishing at full conduction for the remainder of the ON period. Idealy used to switch small inductive loads, $\mathrm{S}+\mathrm{BF}$ avoids current surge and minimizes electrical interference.

eedback/Control Mode

Supply voltage fluctuations changes the power to the load. To overcome this effect the voltage supplied to the load is measured and compared with the power demand from the controller. The error signal is used to automatically hold the power at the value requested.
Three types of control more are available:
Voltage Control Mode, where the input signal is proportional to the voltage output (voltage feedback).
Current Control Mode, where the input signal is proportional to the current output (current feedback).
Power Control Mode, where the input signal is proportional to he power output (power feedback).

As an option it is possible to transfer control mode from voltage to power via a simple digital command.

What our Customers want?

They want a positive experience with our total solution, not just a cheap price!

CD Automation is confident of achieving this with...

Knowledgeable Sales Team
We have a team of sales engineers focused on core business
products only. An expert at no cost, not an engineer with
a big catalogue and little product knowledge, will
welcome customers. Easy access to engineers
when you need a special performance project

Fast Service
Excellent pre sales and after sales service including engineering support.

Easy to do business with us
Fast reaction to your enquiry, short lead times, timely production of order acknowledgement, invoices etc.
Catalogues \& manuals of all our products plus configuration software, available free of charge from our web-site.
Our people are always welcoming to our customers.

$\begin{aligned} & \hline \text { DESCRIPTION } \\ & \hline \text { CODE } \\ & \hline \end{aligned}$		$\begin{gathered} \text { REVO CL } \\ \hline \text { RCL } \end{gathered}$	$\begin{gathered} \hline \text { REVO SSR } \\ \hline \text { SSR } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { REVO S - IPH } \\ \hline \text { RSI } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { REVO S - 2PH } \\ \hline \text { RS2 } \\ \hline \end{array}$	$\begin{gathered} \text { REVO S - 3PH } \\ \hline \text { RS3 } \end{gathered}$	REVO M - IPH REVO M - 2PH		REVO M - 3PH RM3	$\begin{gathered} \text { CD3000E-2PH } \\ \hline \text { RE2 } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CD3000E-3PH } \\ \hline \text { RE3 } \\ \hline \end{array}$	MULTIDRIVE IPH M1	MULTIDRNE 2PH MUTIDRRVE 3PH		$\begin{array}{\|l\|} \hline \text { REVO - TC1 } \\ \hline \text { RTI } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { REVO - TC2 } \\ \hline \text { RT2 } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { REVO - TC3 } \\ \hline \text { RT3 } \\ \hline \end{array}$	CUSTOM-IPH CUSTOM-2PH CUSTOM-3PH			
		RM1					RM2	M2					M3	C1				C2	C3		
\%	MAX VOLTAGE 480V		\square	■	\square	\square	\square	■	\square	\square	■	■	■	\square	\square	\square	\square	■	\square	\square	\square
	max voltace foov	\square	■	-	\square	\square	\square	\square	■												
	max Voltage g90	$\square>280 \mathrm{~A}$		$\square>280 \mathrm{~A}$	$\square>280 \mathrm{~A}$	$\square>=225 \mathrm{~A}$	$\square>=400 \mathrm{~A}$	$\square>=400 \mathrm{~A}$	$\square>=250 \mathrm{~A}$			\square	\square	\square				\square	\square	\square	
"	SINGLE PHASE	\square	\square	\square			\square					$\underline{\square}$			$\underline{\square}$			$\underline{\square}$			
	3 PHASE LIAD STAR OR DELTA				-	\square		\square	\square	\square	\square		\square	\square		\square	\square		\square	\square	
	3 PHASE LOAD STAR WITH NEUTRAL					\square			\square		\square			\square			\square			-	
	3 PHASE LOAD OPEN DELIA	\square				\square			\square		\square			\square			\square			\square	
	SSR 4:30VDC	\square																			
\%	4:20 mA	$\underline{\square}$	0	0	0	0	\square	-	-	-	-	\square	\square	-				0	0	0	
5	0:10 Vdc	\square	0	0	0	0	-	-	\square	\square	\square	\square	\square	\square				0	0	0	
2	10K Potentiometer	\square					\square	-				0	0	0							
	COMMUNICATION COMMAND	\square					\square														
	ZERO CROSSIING		■	\square	\square	\square									\square	\square	\square	(3)	\square	-	
	SINGLE CYCLE						-					\square									
	BURST FIRING			O (4)	O (4)	O (4)	■	■	-	■	■	\square	-	■				O(4)	O(4)	O(4)	
迷	SOFT START + BURST FIRING						\square				\square	-		\square							
\#	PHASE ANGLE	\square					\square				-	\square		-							
	SOFT START + PHAEE ANGLE	\square					\square				\square	\square		\square							
	DELAYED TRIGGERING + BURST	-					-			\square	\square	\square	\square	\square							
	voltage	\square					\square	\square	\square	-	\square	-	-	\square							
\%	Square voltace	\square					-	-	-												
3	CURRENT	\square					\square	-	-	\square	-	\square	\square	-							
	VOLTAGE X CURRENT (POWER)	-					\square	-	-	-	\square	-	-	\square							
\%	VOLTAGE TO POWER TRANSFER	-					-	\square	\square	\square	\square	-	\square	\square							
${ }_{8}$	EXTERNAL CONTROL MODE	\square					-					-	-	\square							
	TEMPERATURE CONTROLLER														\square	\square	\square				
z	INTERNAL CURRENT LIMIT	(1)									(1)	\square (1)		(1)							
	HEATER BREAK+SCR SHORT CIRCUIT	0	0	\bigcirc	\bigcirc	0	0	0	\bigcirc	\square	-	-	■	■	0	0	0	0	0	0	
	INTEGRATED FXXED FUSES	$\square>40 \mathrm{~A}$		$\square>40 \mathrm{~A}$	\square	-	-	-	-	$>40 \mathrm{~A}$	$>40 \mathrm{~A}$	$>40 \mathrm{~A}$	■	\square	\square						
	FUSE \& FUSE HOLDER	$=<40 \mathrm{~A}$	$=<40 A$	$=<40 \mathrm{~A}$	$=<40 \mathrm{~A}$	$=<40 \mathrm{~A}$	$=<40 A$	$=<40 A$	$=<40 \mathrm{~A}$						$=<40 A$	$=<40 \mathrm{~A}$	$=<40 \mathrm{~A}$				
	FLAT WIRING TERMINAL		0 (2)	0 (2)	0 (2)	0 (2)									0 (2)	0 (2)	0 (2)				
\%	RS485 WITH MODBUS PROTOCOL	\square					\square														
	PROFIBUS DP; CAN OPEN+ETHERNET	0					0	0	0	0	0	0	0	0	0	0	0				
	Frontal key Pad	\square					\square	-	\square												
	PC PROGRAMMABLE+USB\TTL Conv.	-					-	-	-	\square	\square	\square	\square	\square	-	■	-				
	REVO EASY									■	■	-	\square	-							
	ANALOGUE INPUT/OUTPUT (5)	1/1					ब/1	ه/1	ø/1	ه/1	1/1	2/4	2/4	2/4							
\triangle	DIIITAL INPUT/OUTPUT	2/1					2/1	2/1	2/1	4/3	4/3	6/4	6/4	6/4							
-	CURRENT	SIIE	SIZE	SIZE	SIIE	SIZE	SIIE	SIIE	SIZE	SIZE	SIZE	SIIE	SIZE	SIZE	SIZE	SIIE	SIZE	SIZE	SIIE	sIZE	
	30		SRO.SR1	SR3.SR6	SR4.SR7	SR5.SR8		SR10	SR11							SR10	SR11				
	35	SR9		SR3.SR6	SR4.SR7	SR5.SR8	SR9	SR10	SR11	59	59		S13	513	SR9	SR10	SR11				
	40	SR9		SR3.SR6	SR4.SR7	SR5.SR8	SR9	SR10	SR11						SR9	SR10	SR11				
	45									59	59		S13	S13							
	60	SR15		SR12	SR12	SR13	SR15	SR16	SR16						SR15	SR16	SR16				
	75									59	59		S13	513							
	90	SR15		SR12	SR12	SR13	SR15	SR16	SR16						SR15	SR16	SR16				
	100									59	511		S13	513							
	120	SR15		SR12	SR13	SR14	SR15	SR16	SR17						SR15	SR16	SR17				
	125									59	S11		S13	S13							
	150	SR15		SR12	SR13	SR14	SR15	SR16	SR17	59	S11		S13	S13	SR15	SR16	SR17		528	529	
	180	SR15		SR12	SR13	SR14	SR15	SR16	SR17						SR15	SR16	SR17				
	200									59									528		
	210	SR15		SR12	SR13	SR14	SR15	SR16	SR17						SR15	SR16	SR17				
	225					S13			S13		S13		S13	S13							
	280	59		59	510		59	S10		S14			S14								
	300					S14			S14		S14			S14				528	528	530	
	350					S14			S14		S14			S14							
	400	512		512	S14	S14	512	S14	S14	S14	S14		S14	S14							
	450				S14	S14		S14	S14	S14	S14		S14	S14					529		
	500	512		S12	S14	S14	S12	S14	S14	S14	S14		S14	S14							
	550																	528	529	530	
	600	512		512	S14		512	S14		514			S14	S14							
	700	512		512	S14		S12	S14		S14			S14								
	800																	528	529	530	
	850											S14	514	515							
	1000											S18	516	522							
	1400											S19	517	S25							
	1500											S19	${ }_{5} 17$	S25							
	1850											520	${ }_{523}$	S26							
	2000				-					侕		520	523	S26							
													S21	S24	S27 527						
			only	wiring avaiable	On 540 A	Random Fir					(4) 4	S Sim	Fring avai	A Analog In		(5) Main Analog Inp	ded				

s9 H $350 \times W 116 \times$ D $220-5,5 \mathrm{~kg}$

Note: H=Height W= Width D=Dept S21 IPH H $890 \times W 263 \times D 518-58 \mathrm{~kg}$. (2400-2700A) 5253 PH H $780 \times W 525 \times \mathrm{D} 435-77 \mathrm{~kg}$. (1400-1500A)
$12 \rightleftharpoons R 1 E V O$

REVO CL - 1PH

Technical Specification

- Dimensions: See size at page 10-11 and dimensions at page 12-13

Load type: Normal resistance, infrared long, short and medium waveform, Silicon Carbide, cold resistance coupled with transforme

- Inputs: 0-10V dc, 4-20mA, 10kpot, SSR, RS485
- Firing mode: Burst Firing, Single Cycle, Soft Start + Phase Angle, Delayed Triggering
- Operating temperature: 0 to $40^{\circ} \mathrm{C}$ without derating
- Control mode: $V^{2}, ~ V$ Voltage, Vxl Power and current
- RS485 port. RTU Modbus Protocol
- Comply with EMC and cUL (Pending)
- Data sheet: More details on "REVO CL" bulletin

Option

HEATER BREAK ALARM

Thyristor Unit connected with Transformers

REVO CL has been specifically designed to drive transformers and has all the drive capability \& techniques required, configurable from the front panel display. Close examination of the transformer application needs to be made as the typical inrush current, when switched on.
This over-current will have the result to damage Fuses or Thyristor.

To avoid this peak current two techniques can be used:

- Phase angle firing with soft start and current limit. This type of firing can be used with all types of loads.
- Normal resistance.

Cold resistance (Example: Kanthall Super elements) Transformer coupled with normal or cold resistance. With cold resistance use I feed-back.

Burst firing using the Delay Triggering (DT) technique. To avoid magnetic circuit saturation, the thyristor unit will switch FF when the load voltage is negative and switch ON again when positive. The unit also has an adjustable delay on voltage zero crossing. In this way it is possible to switch ON when current is zero This Firing technique can only be used with normal resistance, where its resistive value remains constant with temperature
 vere its

The BIG advantage with REVO CL
Buy one unit and you remove all application risks, selecting Phase Angle or Delayed Triggering as required via frontal Key Pad.

REVO SSR
REVO SSR ANALOG

Specifications REVO SSR

- Dimensions: SRO, SR1, (See page 12)
- Load type: Normal resistance, infrared medium and long waveform
- Inputs: SSR
- Firing mode: Zero Crossing
- Operating temperature: See graph on right page
" Comply with EMC and cUL (Pending)
"REVO SSR" Bulletin
Option
Total load failure without latching
All options below are available with Fuse + Fuse Holder only
Current Transformer
ormer+ HB (Heater Break)
Current Transformer +HB (Heater Break) + flat wiring system

Specifications REVO ANALOG
Dimensions: SR1, (See page 12)
Load type: Normal resistance, infrared medium and long waveform
Inputs: $0: 10 \mathrm{~V} ; 4$-20mA

- Firing mode: Zero Crossing
- Operating temperature: See graph on right page

Data sheet: More details on "REVO SSR ANALOG" Bulletin Option
All below option are available with Fuse + Fuse Holder only Current Transformer Transformert HB (Heater Break) Current Transformer+ HB (Heater Break) + flat wiring system

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
	$\mathbf{6}$				
	\mathbf{S}	\mathbf{S}	\mathbf{S}	\mathbf{R}	

[^0]$\rightleftharpoons M=10$

R062 MODULE Power Dissipation versus on state Current and ambient Temperature

R074 MODULE Power Dissipation versus on state Current and ambient Temperature

R090 MODULE Power Dissipation versus on state Current and ambient Temperature

REVO - SX

REVO S - 1PH

Technical Specification

- Dimensions: See size at page 10-11 and dimensions at page 12-13
- Load type: Normal resistance, infrared long and medium waveform
- Inputs: SSR Standard, 0:10V, 4:20mA and Heather Break alarm are options
-Firing mode: Zero Crossing, Burst Firing available with analogue input only
- Comply with EMC and cUL (Pending)
- Data sheet: More details on "REVOS-1PH" Bulletin

Option

Analog input: $4 / 20 \mathrm{~mA}$ or $0 / 10 \mathrm{~V}$

Heather Break Alarm + Current Transformer

		1	2	3		5	6		7	8	9	10	11	12	1314	15	16								
REVO S 1PH		R	S	1				-	_																
4,5,6 Curren		8 Aux. Voltage supply						10 Firing						13 Fan Voltage											
Description code30A	meric code	Description code$\left.\begin{array}{c}\text { No auxiliay yolage enithout } \\ \text { HB andor or nalagog input up } \\ \text { to } 210\end{array}\right)$ included				meric code		Description code			Numeric code			Description code		Numeric code									
	30 A 35 A			1																					
									Burst Firing4 Cycles On at 50\% Power Demand			$Z(6)$			$\begin{aligned} & \text { Fan } 110 V>90 A \\ & \hline \text { Fan } 220 \mathrm{~V}>90 \mathrm{~A} \end{aligned}$										
40 A	040							4 (4)																	
60A	060					With HB and/or Analog input on all unit $=<210$						4				std Version									
90A	090	8 Cycles On at 50\% Power Demand											14 Approvals												
150A	150				$\begin{aligned} & \hline \text { For all units }>210 \mathrm{~A} \text { with } \\ & \text { whichever options and inputs } \\ & 90: 130 \mathrm{~V} \end{aligned}$											8 (4)			Description code		meri				
180 A	180									Burst Firing16 (ycles On at 50% Power Demand			6 (4)			0									
210 A	210	$\xrightarrow{1700: 265 V}$			$\frac{3}{3} 5$				CE EMC For EuropeanMarket																
280A 400 A	280 400	300:330V			$6(5)$$7(5)$										cUL For American Market (Pending)										
500 A	500		600:7								11 Control Mode					15 Manual									
${ }^{6000}$	600		Input						Description code			$\frac{\text { Numeric code }}{0}$													
Max Voltage			scription code		umeric code							Description code			Numeric code										
			ss			S		12 Fuse \& option						None		1									
$\frac{\text { Description code }}{480 \mathrm{~V}}$	Numeric code	$\frac{0: 10 \mathrm{Vdc}}{4: 20 \mathrm{~mA}}$						Description code For All Units $=<40 \mathrm{~A}$No Fuse Fuse \& Fuse Holder			Numeric code			Italian ManualEngish Manual											
	4					\bigcirc								German Manual		4									
$\begin{aligned} & 600 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	7 (7)									16 Version															
	7 (7)												Fuse \& Fuse Holder + CTFuse \& Fuse Holder												
LEGEND CT $=$ Current Transformer HB = Heater Break Alarm								Fuse \& Fuse Holder $+\mathrm{CT}+\mathrm{HB}$				H	Description code			Numeric code									
									x									Standard unit with one fuse only							
Note (1):If you need one REVOS-1PH with 2 Fuse\&Fuse Holder For dimensions see REVOS-2PH. This solution can be used up to 40A max :If you need one REVOS-1PH with 2 Fuse\&Fuse Holder + safety relay or dimensions see REVOS-2PH. This solution can be used up to 40A max :Fixed Fuses over 40A Note (4):Available only with Analog input Note (5):Load voltage must be included in Selected Auxiliary Voltage Range for units 210A											$\begin{gathered} \text { For All Units }>40 \mathrm{~A} \\ \text { Fix Fuse Standard } \\ \hline \text { Fix Fuse Standard + CT } \\ \hline \text { Fix Fuse Standard + CT + HB } \end{gathered}$			${ }_{\text {F }}^{\text {(3) }}$											
									Units with 2 Fuses + Fuse					2 (1)											
																Units with 2 fuses + Fuse Holder + Safety relay + fuse $=<40 \mathrm{~A}$		3 (2)							

REVO S - 2PH

Technical Specification

- Dimensions: See size at page 10-11 and dimensions at page 12-13
- Inputs: SSR Standard, o:10V, 4:20mA and Heather Break alarm are options
- Firing mode: Zero Crossing, Burst Firing available with analogue input only
- Operating temperature: 0 to $40^{\circ} \mathrm{C}$ without derating
- Comply with EMC and cUL (Pending)
- Data sheet: More details on "REVOS-2PH" Bulletin

Option

Analog input: $4 / 20 \mathrm{~mA}$ or $0 / 10 \mathrm{~V}$ Current Transformer+ HB Alarm
Current Transformer only mounted inside

REVO S - 3PH

Technical Specification

- Dimensions: See size at page 10-11 and dimensions at page 12-13
- Load type: Normal resistance, infrared long and medium waveform
- Inputs: SSR Standard, 0:10V, 4:20mA and Heather Break alarm are options
-Firing mode: Zero Crossing, Burst Firing available with analogue input only
- Operating temperature: 0 to $40^{\circ} \mathrm{C}$ without derating
- Comply with EMC and cUL (Pending)
- Data sheet: More details on "REVOS-3PH" Bulletin

Option

Analog input: 4/20 mA or 0/10V
Current Transformer only mounted inside

REVO M - 1PH

Technical Specification

- Dimensions: See size at page 10-11 and dimensions at page 12-13
- Load type: Normal resistance, infrared short long and medium waveform, Silicon Carbide
- Inputs: $0: 10 \mathrm{~V}$ dc, $4: 20 \mathrm{~mA}, 10 \mathrm{kpot}$, SSR, RS485
- Firing mode: Zero Crossing, Burst Firing, Single Cicle, Soft Start + Phase Angle, Delayed Triggering
- Operating temperature: 0 to $40^{\circ} \mathrm{C}$ without derating
- Control mode: V Voltage, VxI Power, I and

Comply with EMC and cuL (Pending)

- Data sheet: More details on "REVO M - 1PH" bulletin

Option

HB + CT : Current transformer plus HB Alarm
Control Mode Retransmission

REVO M - 2PH

Technical Specification

- Dimensions: See size at page 10-11 and dimensions at page 12-13
- Load type: Normal resistance, infrared long and medium waveform, Silicon Carbide
- Inputs: 0-10V dc, 4-20mA, 10kpot, SSR, RS485
- Firing mode: Zero Crossing, Burst Firing
- Operating temperature: 0 to $40^{\circ} \mathrm{C}$ without derating
- Control mode: V Voltage, VXI Power
- RS485 port. RTU Modbus Protocol
- Comply with EMC and cUL (Pending)
- Data sheet: More details on "REVO M - 2PH" bulletin

Option
HB + CT : Current transformer plus HB Alarm
Control Mode Retransmission

REVO M - 3PH

Technical Specification

- Dimensions: See size at page 10-11 and dimensions at page 12-13
- Load type: Normal resistive, infrared long and medium waveform, Silicon Carbide
- Inputs: 0-10V dc, 4-20mA, 10kpot, SSR, RS485
- Firing mode: Zero Crossing, Burst Firing
- Operating temperature: 0 t t $40^{\circ} \mathrm{C}$ with
- Operating temperature: 0 to $40^{\circ} \mathrm{C}$ without derating
- Control mode: V Voltage, Vxl Power
- Comply with EMC and cUL (Pending)
- Data sheet: More details on "REVO M - 3PH" bulletin

Option
HB + CT : Current transformer plus HB Alarm
Control Mode Retransmission

$\mathrm{CT}=$ Current Transormer
$\mathrm{HB}=$ Heater Break Alarm

CD 3000E-2PH

Technical Specification

- Dimensions: See size at page 10-11 and dimensions at page 12-13
- Load type: Normal resistance, three phase transformer, coupled with normal resistance
- Inputs: $0-10 \mathrm{~V}$ dc, $4-20 \mathrm{~mA}$, 10k Pot, SR485
- Firing mode: Zero Crossing, Burst Firing, DT+BF (not with cold resistance)
- Operating temperature: 0° to $40^{\circ} \mathrm{C}$ without derating

Control mode: V Voltage, VxI Power, Open Loop

- Comply with EMC and cUL
- Data sheet: More details on "CD3000E - 2PH" bulletin

Option
No options, all included

cT $=$ Internal fixee fuse
HB $=$ Herent
Heanerest Break ormer
Note (1): DT + BF can be used to drive transformers coupled with normal resistance
Note (2): After 16th digit write current and voltage of load inside brackets sex. (190A-4000). Required if units are to be tuned to load.

CD 3000E 3PH

Technical Specification

Dimensions: See size at page $10-11$ and dimensions at page 12-13

- Load type: Normal resistance, three phase transormer coupled with normal or cold resistance
- Inputs: None, SSRR, O-10V, 4 -20mA, 1okpot, RS485 communication
- Firing mode: Zero Crossing, Single Cycle, Burst Firing, Soft Start + Burst Firing, Delayed Triggering + Burst Firing, Phase Angle, Soft Start + Phase Angle
- Operating temperature: 0° o to $40^{\circ} \mathrm{C}$ without derating - Operating temperature: 0° to $40^{\circ} \mathrm{C}$ without derating

Control mode: V, V Vx|,

- RS485 RTU port. Modbus Protocol
- Comply with EMC and cUL
- Data sheet: More details on "CD3000E - 3PH" bulletin

Option
No options, all included

IF
CT
$=$ Internal Fived Fuse
Current Transformer
Note (1): Atter 1 th d digit wite current and voltage of load inside brackets Ex. (1900
Note (2): $\mathrm{T}+\mathrm{BF}$ can be used to drive transormers coupled with normal resistance
\equiv REVO

MULTIDRIVE 2PH

Technical Specification

- Dimensions: See size at page 10-11 and dimensions at page 12-13
- Load type: Normal resistance, three phase transformer coupled with normal resistance

Eputs: 0-10V, $4-20 \mathrm{~mA}, 10 \mathrm{kpot}$, RS485 communication, SSR

- Firing mode: Zero Crossing, Burst Firing, Delayed Triggering + Burst Firing (not with cold resistance)

Operating temperature: 0° to $40^{\circ} \mathrm{C}$ without derating
Control mode: V Voltage, Vxl Power and open loop

- Control mode: V Voltage, Vxl Power and open loop
- Comply with EMC and cUL
- Data sheet: More details on "Multidrive 2 PH " bulletin

Option
No options, all included

Note (1): Atter 16th digit witte current and voltage of load inside brackets Ex. (190A-
Note (2): Rating not available at 690 V
Note (3): In

MULTIDRIVE 3 PH

Technical Specification

- Dimensions: See size at page 10-11 and dimensions at page 12-13
- Load type: Normal resistance, Three phase transformer coupled with normal or cold resistance
- Inputs: 0-10V, 4-20mA, 10kpot, RS485 communication, SSR
- Firing mode: Zero Crossing, Burst Firing, Soft Start + Burst Firing, Phase Angle, Soft Start + Phase Angle and Delayed Triggering
- Operating temperature: 0° to $40^{\circ} \mathrm{C}$ without derating - Operating temperature: 0° to $40^{\circ} \mathrm{C}$ without derating
- Control mode: Voltage, Power, Current, External Profiling 0:10V, Open Loop
- RS485 port. RTU Modbus Protoco
- Data sheet: More details on "Multidrive 3 PH" bulletin

Option
No options, all included

[^0]: Note (2): Options avaiable only with Fuse + Fuse Holder
 Note (3): All the Revo Analog version have fuse + Fuse

